Small-angle X-ray scattering studies of the oligomeric state and quaternary structure of the trifunctional proline utilization A (PutA) flavoprotein from Escherichia coli.

نویسندگان

  • Ranjan K Singh
  • John D Larson
  • Weidong Zhu
  • Robert P Rambo
  • Greg L Hura
  • Donald F Becker
  • John J Tanner
چکیده

The trifunctional flavoprotein proline utilization A (PutA) links metabolism and gene regulation in Gram-negative bacteria by catalyzing the two-step oxidation of proline to glutamate and repressing transcription of the proline utilization regulon. Small-angle x-ray scattering (SAXS) and domain deletion analysis were used to obtain solution structural information for the 1320-residue PutA from Escherichia coli. Shape reconstructions show that PutA is a symmetric V-shaped dimer having dimensions of 205 × 85 × 55 Å. The particle consists of two large lobes connected by a 30-Å diameter cylinder. Domain deletion analysis shows that the N-terminal DNA-binding domain mediates dimerization. Rigid body modeling was performed using the crystal structure of the DNA-binding domain and a hybrid x-ray/homology model of residues 87-1113. The calculations suggest that the DNA-binding domain is located in the connecting cylinder, whereas residues 87-1113, which contain the two catalytic active sites, reside in the large lobes. The SAXS data and amino acid sequence analysis suggest that the Δ(1)-pyrroline-5-carboxylate dehydrogenase domains lack the conventional oligomerization flap, which is unprecedented for the aldehyde dehydrogenase superfamily. The data also provide insight into the function of the 200-residue C-terminal domain. It is proposed that this domain serves as a lid that covers the internal substrate channeling cavity, thus preventing escape of the catalytic intermediate into the bulk medium. Finally, the SAXS model is consistent with a cloaking mechanism of gene regulation whereby interaction of PutA with the membrane hides the DNA-binding surface from the put regulon thereby activating transcription.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering a trifunctional proline utilization A chimaera by fusing a DNA-binding domain to a bifunctional PutA

Proline utilization A (PutA) is a bifunctional flavoenzyme with proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) domains that catalyses the two-step oxidation of proline to glutamate. Trifunctional PutAs also have an N-terminal ribbon-helix-helix (RHH) DNA-binding domain and moonlight as autogenous transcriptional repressors of the put regulon. A unique p...

متن کامل

Crystallization and preliminary crystallographic analysis of the proline dehydrogenase domain of the multifunctional PutA flavoprotein from Escherichia coli.

The PutA flavoprotein from Escherichia coli is a multifunctional protein that plays pivotal roles in proline catabolism by functioning as both a membrane-associated bifunctional enzyme and a transcriptional repressor. Peripherally membrane-bound PutA catalyzes the two-step oxidation of proline to glutamate, while cytoplasmic PutA represses the transcription of its own gene and the gene for a pr...

متن کامل

Application of small angle X-ray scattering (SAXS) for differentiation between normal and cancerous breast tissues

ABSTRACT Background: Coherent scattering leads to diffraction effects and especially constructive interferences. Theseinterferences carry some information about the molecular structure of the tissue. As breast cancer isthe most widespread cancer in women, this project evaluated the application of small angleX-ray scattering (SAXS) for differentiation between normal and cancerous breast tissues....

متن کامل

Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure.

Many enzymes form homooligomers, yet the functional significance of self-association is seldom obvious. Herein, we examine the connection between oligomerization and catalytic function for proline utilization A (PutA) enzymes. PutAs are bifunctional enzymes that catalyze both reactions of proline catabolism. Type A PutAs are the smallest members of the family, possessing a minimal domain archit...

متن کامل

Crystal structure of the bifunctional proline utilization A flavoenzyme from Bradyrhizobium japonicum.

The bifunctional proline catabolic flavoenzyme, proline utilization A (PutA), catalyzes the oxidation of proline to glutamate via the sequential activities of FAD-dependent proline dehydrogenase (PRODH) and NAD(+)-dependent Delta(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) domains. Although structures for some of the domains of PutA are known, a structure for the full-length protein has no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 286 50  شماره 

صفحات  -

تاریخ انتشار 2011